1. Let X, Y be topological vector spaces. Let $T: X \to Y$ be a linear map. Show that T is continuous if and only if it is bounded.

Solution: We can find the proof in the book of Walter Rudin, Functional Analysis, Theorem 1.32, page-24.

- 2. Let X be a L C T V S. Let $K \subset X$ be a compact set. Show that K is totally bounded.

Solution: We can find the proof in the book of Walter Rudin, Functional Analysis, Theorem 3.20 part c, proof, page-72.

3. Let X and Y be completely metrizable topological vector spaces. Let $T_n : X \to Y$ be a sequence of continuous linear maps such that $\lim_{n \to \infty} T_n(x)$ exists for all $x \in X$. Show that $T(x) = \lim_{n \to \infty} T_n(x)$ is a bounded linear map.

Solution: We can find the proof in the book of Walter Rudin, Functional Analysis, Theorem 2.8, page-46.

4. State and prove the Banach-Alaoglu theorem for topological vector spaces.

Solution: We can find the statement and proof in the book of Walter Rudin, Functional Analysis, Theorem 3.15, page-68.

5. Let K be a compact convex set in a L C T V S, X. Let $F \subset K$ be an extreme, convex, closed set. Show that F has an extreme point of K.

Solution: We can find the proof in the book of Walter Rudin, Functional Analysis, Theorem 3.23, proof, page-75. $\hfill \Box$

6. Let X be a Banach space and (Ω, Σ, μ) a probability space. Let $f : \Omega \to X$ be a strongly μ -measurable function. Show that f in a.e separable valued.

Solution: We can find the proof in the book of Joseph Diestel and John Jerry Uhl, Vector Measures. Corollary 3, page-42.

7. Let X and f be an question 6. Suppose $\int_{\Omega} ||f(w)|| d\mu(w) \leq \infty$. Show that f is Bochner integrable.

Solution: We can find the proof in the book of Joseph Diestel and John Jerry Uhl, Vector Measures. Theorem 2, page-45.

8. Let $f:[0,1] \to C[0,1]$ be a measurable function such that inverse image of a Borel set is Borel. Is f is strongly measurable ? Justify your answer.

Solution: Since C[0,1] is separable, strongly measurable and Borel measurable are equivalent. Therefore f is strongly measurable.

9. Let X be a Banach space and $f : [0,1] \to X$ be a Bochner integrable function w.r.t the Lebesgue measure. Show that $\lim_{\lambda(E)\to 0} \int_E f d\lambda = 0$.

Solution: We can find the proof in the book of Joseph Diestel and John Jerry Uhl, Vector Measures. Theorem 4 (i), page-46.

10. State and prove the Pettis measurability theorem.

Solution: We can find the statement and proof in the book of Joseph Diestel and John Jerry Uhl, Vector Measures. Theorem 2, page-42.